Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Publication year range
1.
Vopr Virusol ; 68(1): 79-85, 2023 03 11.
Article in Russian | MEDLINE | ID: mdl-36961238

ABSTRACT

INTRODUCTION: Insectivores are newly recognized hantaviral reservoir worldwide. Four distinct shrew-borne hantaviruses (family Hantaviridae) have been identified in two regions located in southern and northern part of the Russian Far East, two genetic variants of Seewis virus (SWSV), Lena River virus (LENV), Kenkeme virus (KKMV) and Yakeshi virus (YKSV). Here, we describe geographic distribution of shrew-borne hantaviruses in southern part of the Russian Far East: Jewish Autonomous region, Khabarovsk Krai, Primorsky Krai and Sakhalin region. MATERIALS AND METHODS: Lung samples from shrews of genus Sorex, captured in the four regions of Far Eastern Russia, were examined for hantavirus RNA using reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis of the partial nucleotide sequences of viral genome was conducted using MEGA X software. RESULTS: New genetic variant of YKSV was identified in new reservoir host, long-clawed shrew (S. ungiuculatus) from Sakhalin Island. Genetic variant of SWSV, ARTV-Sc, has been found to circulate among S. caecutiens on the seacoast of Khabarovsk and Primorsky Krai. KKMV virus and second genetic variant of SWSV, ARTV-St, were found in S. roboratus and S. tundrensis, respectively from Jewish Autonomous region. CONCLUSION: Sorex-borne hantaviruses were found in all studied regions of Far Eastern Russia. Our results demonstrated co-evolution of SWSV, KKMV, and YKSV viruses throughout the geographic distribution of its hosts.


Subject(s)
Orthohantavirus , Shrews , Animals , Phylogeny , Russia/epidemiology , Orthohantavirus/genetics , Asia, Eastern
2.
Vopr Virusol ; 62(1): 30-5, 2017.
Article in English | MEDLINE | ID: mdl-29323844

ABSTRACT

The tick-borne encephalitis virus (TBEV) strain Lazo MP36 was isolated from the pool of mosquitoes Aedes vexans collected in Lazo region of Khabarovsk territory in August 2014. Phylogenetic analysis of the strain Lazo MP36 complete genome (GenBank accession number KT001073) revealed its correspondence to the TBEV Far Eastern subtype and differences from the following strains: 1) from ticks Ixodes persulcatus P. Schulze, 1930 [vaccine strain 205 (JX498939) and strains Khekhtzir 1230 (KF880805), Chichagovka (KP844724), Birobidzhan 1354 (KF880805) isolated in 2012-2013]; 2) from mosquitoes [strain Malyshevo (KJ744034) isolated in 1978 from Aedes vexans nipponii in Khabarovsk territory; strain Sakhalin 6-11 isolated from the pool of mosquitoes in 2011 (KF826916)]; 3) from human brain [vaccine strain Sofjin (JN229223), Glubinnoe/2004(DQ862460). Kavalerovo (DQ862460), Svetlogorie (DQ862460)]. The fusion peptide necessary for flavivirus entry to cells of the three TBEV strains isolated from mosquitoes (Lazo MP36, Malyshevo and Sakhalin 6-11) has the canonical structure 98-DRGWGNHCGLFGKGSI-113 for the tick-borne flaviviruses. Amino acid transition H104G typical for the mosquito-borne flaviviruses was not found. Structures of 5'- and 3'-untranslated (UTR) regions of the TBEV strains from mosquitoes were 85-98% homologous to the TBEV strains of all subtypes without recombination with mosquito-borne flaviviruses found in the Far East of Russia. Secondary structures of 5'- and 3'-UTR as well as cyclization sequences (CS) of types a and B are highly homologous for all TBEV isolates independently of the biological hosts and vectors. similarity of the genomes of the TBEV isolates from mosquitoes, ticks and patients as well as pathogenicity of the isolates for new-borne laboratory mice and tissue cultures might suggest a possible role of mosquitoes in the TBEV circulation in natural foci as an accidental or additional virus carrier.


Subject(s)
Aedes/virology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/epidemiology , Genome, Viral , Ixodes/virology , RNA, Viral/genetics , Amino Acid Sequence , Animals , Animals, Newborn , Disease Vectors , Dogs , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Asia, Eastern/epidemiology , Genotype , Humans , Mice , Mice, Inbred ICR , Nucleic Acid Conformation , Phylogeny , RNA, Viral/chemistry , RNA, Viral/isolation & purification , Rodentia/virology , Sequence Alignment , Sequence Homology, Amino Acid , Siberia/epidemiology
3.
Virus Res ; 70(1-2): 31-44, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11074123

ABSTRACT

To identify the hantaviruses causing hemorrhagic fever with renal syndrome (HFRS) in the Far East of Russia, blood samples collected from HFRS patients in 1994-1998, were examined by reverse transcription-polymerase chain reaction. In addition, 36 sera were tested by an immunofluorescence assay for antibodies against Hantaan, Seoul, Puumala, and Khabarovsk viruses, and 54 samples were tested by plaque reduction neutralization test. With both serological assays, the highest antibody titers were to Hantaan and/or Seoul viruses. Of 110 blood samples 36 were found RT-PCR positive. Phylogenetic analysis the sequences of a 256-nucleotide (nt) fragment of the hantavirus M genome segment revealed at least 3 genetically distinct hantavirus lineages. Nucleotide sequence comparison showed that two of the lineages, designated as FE and Amur (AMR), differed from one another by 15.9-21.2% and from Hantaan virus by 9.8-17.5%. The third lineage, VDV, differed from Seoul virus by 2.6-5.1%. All S segment sequences were from FE lineage, and differed from Hantaan virus by 10.7-12.6%. Thirty of the 36 (83%) analyzed sequences were found to be the FE genotype, which is very similar to that of Hantaan virus, strain 76-118. Of the remaining hantaviruses, 11% were the AMR genotype, and 6% the VDV genotype, which are genetically novel genotypes of Hantaan or Seoul viruses, respectively.


Subject(s)
Genetic Variation , Hantaan virus/genetics , Hemorrhagic Fever with Renal Syndrome/virology , Amino Acid Sequence , DNA, Viral/analysis , DNA, Viral/blood , Hantaan virus/isolation & purification , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Molecular Sequence Data , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Russia/epidemiology , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...